Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

SrSeO₃ from a combined X-ray and neutron powder diffraction study

Oleg A. Dityatiev,^a Philip Lightfoot,^b Petr S. Berdonosov^a* and Valery A. Dolgikh^a

^aMoscow State University, Leninskie Gory 1 building 3 GSP-2, 119992 Moscow, Russian Federation, and ^bEaStChem, School of Chemistry, University of St Andrews, St Andrews KY16 9ST, Scotland

Correspondence e-mail: berdonosov@inorg.chem.msu.ru

Received 10 May 2007; accepted 23 May 2007

Key indicators: powder neutron study; T = 295 K; mean σ (Se–O) = 0.004 Å; R factor = 0.064; wR factor = 0.082.

Strontium trioxoselenate(IV), SrSeO₃, crystallizes in the KClO₃ structure type and is isotypic with BaSeO₃, β -PbSeO₃ and the mineral scotlandite (PbSO₃). The Sr²⁺ cation is nine-coordinated by O atoms. The SrO₉ polyhedra are linked together by common edges to form a three-dimensional network, with channels running along the *b* axis where the Se⁴⁺ cations reside. They are coordinated by three O atoms to form one-sided SeO₃*E* pyramids (*E* = electron lone pair), with Se–O bond lengths of 1.672 (6) and 1.688 (3) Å (× 2). The SeO₃*E* pyramids are not connected to each other; instead, they share O atoms with the SrO₉ polyhedra. Except for one O atom, all other atoms (one Sr, one Se and the second O atom) are located on mirror planes.

Related literature

For precipitation of SrSeO₃ from aqueous solutions, see: Continéanu (1994); Fatu *et al.* (2003). The structure of SrSeO₃ is unrelated to that of the polymorphic SrTeO₃ (Yamada & Iwasaki, 1972; Elerman, 1993; Dityatiev *et al.*, 2006; Zavodnik *et al.*, 2007*a,b*), but crystallizes in the KClO₃ structure type (Danielsen *et al.* 1981). It is isotypic with BaSeO₃ (Giester & Lengauer, 1998), β -PbSeO₃ (Koskenlinna & Valkonen, 1977) and PbSO₃ (Pertlik & Zemann, 1985). The results of the present powder diffraction study are nearly the same as those of the independent single-crystal study of SrSeO₃ (Wildner & Giester, 2007). For structures of the *M*TeO₃ (*M* = Ca, Ba) homologues, see: Kocak *et al.* (1979); Folger (1975).

Experimental

Crystal data

SrSeO ₃	c = 4.4550 (3) Å
$M_r = 214.58$	$\beta = 107.419 \ (4)^{\circ}$
Monoclinic, $P2_1/m$	V = 152.90 (2) Å ³
a = 6.5702 (4) Å	Z = 2
b = 5.4749 (3) Å	Neutron radiation

 $\lambda = 1.59432 \text{ Å}$ $\mu = 0.02 \text{ mm}^{-1}$ T = 295 KSpecimen shape: cylinder $30 \times 10 \times 10 \text{ mm}$

Data collection

D2b diffractometer at ILL, Grenoble Specimen mounting: vanadium can Specimen mounted in transmission mode

Refinement

ł

ł

S

F

F

$R_{\rm p} = 0.064$
$\dot{R}_{wp} = 0.082$
$R_{exp} = 0.128$
$R_{F^2} = 0.093$
S = 0.65
Excluded region(s): none
Profile function: CW Profile
function number 2 with 18 terms.
Profile coefficients for Simpson's
rule integration of pseudo-Voigt
function (Howard, 1982;
Thompson et al., 1987). 1(GU) =
89.779, 2(GV) = -57.381, 3(GW)
= 105.091, 4(LX) = 20.389, 5(LY)
= 0.000, 6(trns) = 0.000, 7(asym) =
12.8654, 8(shft) = 0.0000, 9(GP) =
0.000, 10(stec) = 0.00, 11(ptec) =

Specimen prepared at ambient pressure Specimen prepared at 473 K Particle morphology: irregular, white

Scan method: step Absorption correction: none $2\theta_{\min} = 5, 2^{\circ}, 2\theta_{\max} = 160^{\circ}$ Increment in $2\theta = 0.05^{\circ}$

0.00, 12(sfec)= 0.00, 13(L11) = 0.000, 14(L22) = 0.000, 15(L33) =0.000, 16(L12) = 0.000, 17(L13) =0.000, 18(L23) = 0.000. Peak tails are ignored where the intensity is below 0.0005 times the peak. Aniso broadening axis 0.0 0.0 1.0 No. of reflections: 349 34 parameters 3 restraints Preferred orientation correction: March-Dollase (Dollase, 1986). axis 1, ratio = 0.88823, h = 0.000, k = 1.000, l = 0.000. Preferred orientation correction range: Min = 0.83687, Max = 1.42785

Table 1

Selected geometric parameters (Å, °).

Sr1-O1 ⁱ	2.631 (6)	Sr1-O2 ⁱⁱ	2.633 (4)
Sr1-O1 ⁱⁱ	3.022 (3)	Se1-O1 ^{iv}	1.672 (6)
Sr1-O2	2.670 (4)	Se1-O2	1.688 (3)
Sr1-O2 ⁱⁱⁱ	2.694 (5)		
O1 ^{iv} -Se1-O2	101.88 (19)	$O2-Se1-O2^v$	99.61 (26)

Symmetry codes: (i) x + 1, y, z; (ii) $-x + 1, y - \frac{1}{2}, -z + 1$; (iii) $-x + 1, y - \frac{1}{2}, -z$; (iv) x, y, z - 1; (v) $x, -y + \frac{3}{2}, z$.

Table 2

Unit-cell parameters for isotypic MXO_3 compounds (M = Ba or Pb; X = S or Se) and Se(S)—O bond lengths (Å, °).

Compound	а	b	с	β	Se(S)-O
BaSeO ₃ ^{<i>a</i>} β -PbSeO ₃ ^{<i>b</i>} Scotlandite ^{<i>c</i>}	4.677 4.5737 4.505	5.645 5.5137 5.333	6.851 6.634 6.405	107.16 106.547 106.24	1.690, 1.693 (× 2) 1.674, 1.729 (× 2) 1.507, 1.529 (× 2)

References: (a) Giester & Lengauer (1998); (b) Koskenlinna & Valkonen (1977); (c) Pertlik & Zemann (1985).

Data collection: local program at ILL; cell refinement: *GSAS* (Larson & Von Dreele, 1987); data reduction: local program at ILL; method used to solve structure: coordinates taken from an isotypic compound (Giester & Lengauer, 1998); program(s) used to refine structure: *GSAS*; molecular graphics: *DIAMOND* (Brandenburg, 2001); software used to prepare material for publication: *GSAS*.

This work was carried out under partial funding from the Russian Foundation for Basic Research (grant Nos. RFFI 05-03-32719 and 06-03-32134). PSB thanks INTAS YSF for support (grant No. 05-109-4474).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2114).

References

- Brandenburg, K. (2001). DIAMOND. Release 2.1e. Crystal Impact GbR, Bonn, Germany.
- Continéanu, M. (1994). Rev. Chim. (Bucarești), 45, 477-481.
- Danielsen, J., Hazell, A. & Larsen, F. K. (1981). Acta Cryst. B37, 913-915.
- Dityatiev, O. A., Berdonosov, P. S., Dolgikh, V. A., Aldous, D. W. & Lightfoot, P. (2006). Solid State Sci. 8, 830-835.
- Dollase, W. A. (1986). J. Appl. Cryst. 19, 267-272.
- Elerman, Y. (1993). Turk. J. Phys. 17, 465-473.
- Fatu, D., Continéanu, M. & Telea, C. (2003). Rev. Chim. (Bucarești), 54, 337-340.

Folger, F. (1975). Z. Anorg. Allg. Chem. 411, 111-117.

Giester, G. & Lengauer, Ch. L. (1998). Monatsh. Chem. 129, 445-454. Howard, C. J. (1982). J. Appl. Cryst. 15, 615-620.

Kocak, M., Platte, C. & Trömel, M. (1979). Z. Anorg. Allg. Chem. 453, 93-97. Koskenlinna, M. & Valkonen, J. (1977). Cryst. Struct. Commun. 6, 813-816.

Larson, A. C. & Von Dreele, R. B. (1987). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.

- Pertlik, F. & Zemann, J. (1985). Tschermaks Mineral. Petro. Mitt. 34, 289-295. Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79-83.
- Wildner, M. & Giester, G. (2007). Neues Jahrb. Mineral. Abh. 184. In the press.
- Yamada, T. & Iwasaki, H. (1972). Appl. Phys. Lett. 21, 89-90.
- Zavodnik, V. E., Ivanov, S. A. & Stash, A. I. (2007a). Acta Cryst. E63, i111i112.

Zavodnik, V. E., Ivanov, S. A. & Stash, A. I. (2007b). Acta Cryst. E63, i75-i76.

supplementary materials

Acta Cryst. (2007). E63, i149-i150 [doi:10.1107/S1600536807025135]

SrSeO₃ from a combined X-ray and neutron powder diffraction study

O. A. Dityatiev, P. Lightfoot, P. S. Berdonosov and V. A. Dolgikh

Comment

Multinary Te(IV) and Se(IV) oxides have been extensively studied in recent decades due to their potential non-linear optical and ferroelectric properties. The first tellurate(IV) where ferroelectric properties have been discovered is SrTeO₃ (Yamada & Iwasaki, 1972). It is polymorphic and has a relatively complex crystal structure (Elerman, 1993; Dityatiev *et al.* 2006; Zavodnik *et al.*, 2007), and no analogous structures have been reported so far. The alkaline earth homologues MTeO₃ (M = Ca, Ba) adopt different structures (Kocak *et al.*, 1979; Folger, 1975), and the crystal structure of the selenium homologue SrSeO₃ has not been structurally characterized so far.

During the review process we were notified that more or less simultaneously with our study the crystal structure of $SrSeO_3$ was determined independently from single-crystal X-ray data. The results of the single-crystal study and a comparative discussion of isotypic and related compounds under consideration of a stereochemical equivalence of ESeO₃ groups and tetrahedral TO₄ groups will be published soon (Wildner & Giester, 2007). In comparison with the somewhat more precise single-crystal data, the results of the present powder diffraction study are essentially the same.

In the SrSeO₃ structure the Sr²⁺ cation is coordinated by seven nearest O atoms up to 2.694 (5) Å and two more distant O atoms at 3.022 (2) Å (Table 1), which results in a distorted monocapped square antiprism as coordination polyhedron. The SrO₉ polyhedra are linked together by common edges to form a three-dimensional network with channels running along b, where the Se⁴⁺ atoms are located (Fig. 1a). They are coordinated by three O atoms forming SeO₃E pyramids (E = electron lone pair; Fig. 1 b) with basal oxygen planes parallel to each other (Fig. 2). Each pyramid is linked to six SrO₉ polyhedra, sharing O—O edges with three SrO₉ polyhedra and oxygen vertices with another three Sr polyhedra (Fig. 1 b). The Se—O bonds are directed to opposite sides of the Sr–O network channels and act as additional links (Fig. 1a). The remaining "empty" volume of the channels accommodates the stereochemically active lone pairs of the Se⁴⁺ cations.

The structure of SrSeO₃ is unrelated to that of the heavier homologue SrTeO₃, but crystallizes in the KClO₃ structure type (Danielsen *et al.*, 1981) and is isotypic with BaSeO₃ (Giester & Lengauer, 1998), β -PbSeO₃ (Koskenlinna & Valkonen, 1977) and the mineral scotlandite (PbSO₃) (Pertlik & Zemann, 1985). All the *M*XO₃ (*M* = Pb, Ba; *X* = Se, S) compounds (Table 2) are built up of MO₉ polyhedra forming the network, with channels occupied by the lone-pair cations *X*⁴⁺. The M—O bond lengths are shown in Fig. 3, which reflects the distortions of the corresponding polyhedra. For the selenates(IV), the *M*-O coordination may be considered as 7 (2.53–2.87 Å) + 2 (3.02–3.04 Å). If the degree of deformation (Δ) is estimated as the difference between the longest and the shortest M—O bonds, for *M* = Ba and Sr Δ amounts to 0.392 and 0.326 Å, respectively, but for PbSeO₃ Δ is much larger (0.511 Å). The discrepancy may be explained by the presence of Pb²⁺ with its additional electron lone pair. On the other hand, for scotlandite Δ is 0.304 Å which is even smaller than that estimated for related alkaline earth selenites.

Experimental

Hot aqueous solutions of Na₂SeO₃ and Sr(NO₃)₂ (both chemically pure) were mixed in the stoichiometric ratio 1:1 which resulted in slow precipitation of a fine white powder. The product with the best crystallinity was obtained by mixing the hot solutions (acidified to $pH \approx 1$) and by subsequent slow neutralization with an aqueous solution of ammonia. The product was then repeatedly washed with hot water and decanted, and finally dried at 423–473 K.

The IR spectrum, recorded as a hexachlorobenzene suspension placed between two NaCl disks on a "Specord" spectrophotometer, showed no absorption bands in the 4000–2000 cm⁻¹ region, thus ruling out incorporation of OH⁻ or water. Thermal analysis performed on a Perkin-Elmer TG7 derivatograph in air up to 1323 K showed absence of any phase transitions, oxidation or decomposition reactions.

Our results disagree with those given by Continéanu (1994) and Fatu *et al.* (2003) who obtained SrSeO₃·4.5H₂O under similar conditions. It is most likely that strontium selenate(IV) crystallizes from aqueous solutions as SrSeO₃·4.5H₂O at room temperature, but as anhydrous SrSeO₃ at about 373 K. Indeed, the sample precipitated at room temperature had a different X-ray pattern, however, with rather poor quality which prevented further X-ray studies.

Refinement

The X-ray data for structure determination were collected on a Stoe Stadi/P transmission system, using monochromatic Cu K α 1 radiation, over the range of 5–120°/2 θ with a step size of 0.02°. Satisfactory *R* values (*R* = 18%) were found when the atomic parameters of the heavy atoms of the isotypic BaSeO₃ (Giester & Lengauer, 1998) were used as a starting model. However, we were not able to localize all oxygen atoms. Therefore we have supplemented our investigation with a neutron powder diffraction study which helped to refine the O atoms. The powder neutron diffraction data were collected on the high-flux powder diffractometer D2b at ILL, Grenoble. The SrSeO₃ sample was loaded into a vanadium can, and data were collected at 295 K for about 2 h. In the final refinement cycles, all atoms were refined with isotropic temperature factors. The March–Dollase model (Dollase, 1986) showed the [010] direction for preferred orientation with a ratio of 0.88. The final Rietveld refinement plot (neutron data) for SrSeO₃ is displayed in Fig. 4.

Figures

Fig. 1. The crystal structure of SrSeO₃: a) The network of SrO₉ polyhedra with the Se atoms located in the channels; b) The SeO₃E pyramid linked to the SrO₉ polyhedra.

Fig. 2. Arrangement of the oxygen basal planes of the SeO₃ groups in SrSeO₃.

Fig. 3. The M—O distances in isotypic MXO₃ (M = Sr, Ba, Pb; X = Se, S) compounds.

Strontium trioxoselenate(IV)

Crystal data SrSeO₃ $D_{\rm x} = 4.661 {\rm Mg m}^{-3}$ Neutron radiation $M_r = 214.58$ $\lambda = 1.59432$ Å Monoclinic, $P2_1/m$ $\mu = 0.02 \text{ mm}^{-1}$ T = 295 KHall symbol: -P 2yb a = 6.5702 (4) ÅSpecimen shape: cylinder *b* = 5.4749 (3) Å $30\times10\times10\ mm$ c = 4.4550(3) Å Specimen prepared at ambient kPa $\beta = 107.419 \ (4)^{\circ}$ Specimen prepared at 473 K Particle morphology: irregular, white $V = 152.90 (2) \text{ Å}^3$ Z = 2

Data collection

D2b at ILL diffractometer	<i>T</i> = 295 K
Specimen mounting: vanadium can	$2\theta_{\min} = ?, 2\theta_{\max} = ?^{\circ}$
Specimen mounted in transmission mode	Increment in $2\theta = ?^{\circ}$
Scan method: step	

Refinement

Least-squares matrix: full

Profile function: CW Profile function number 2 with 18 terms Profile coefficients for Simpson's rule integration of pseudovoigt function (Howard, 1982; Thompson *et al.*, 1987). #1(GU) = 89.779 #2(GV) = -57.381 #3(GW) = 105.091 #4(LX) = 20.389 #5(LY) = 0.000 #6(trns) = 0.000 #7(asym) = 12.8654#8(shft) = 0.0000 #9(GP) = 0.000 #10(stec) = 0.00#11(ptec) = 0.00 #12(sfec) = 0.00 #13(L11) = 0.000#14(L22) = 0.000 #15(L33) = 0.000 #16(L12) =0.000 # 17(L13) = 0.000 # 18(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0005 times the peak Aniso. broadening axis 0.0 0.0 1.0

$R_{\rm p} = 0.064$	34 parameters
$R_{\rm wp} = 0.082$	3 restraints
$R_{\rm exp} = 0.128$??
$R_{\rm B} = ?$	$(\Delta/\sigma)_{\rm max} = 0.03$
<i>S</i> = 0.65	Extinction correction: none
Wavelength of incident radiation: ? Å	Preferred orientation correction: March–Dollase (Dollase, 1986) AXIS 1 Ratio = 0.88823 h = 0.000 k = 1.000 l = 0.000 Prefered orientation correction range: Min = 0.83687 , Max = 1.42785

Excluded region(s): none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Sr1	0.7016 (5)	0.25	0.3473 (9)	0.0070 (8)*
Se1	0.1566 (5)	0.25	0.0639 (8)	0.0104 (7)*
01	0.1081 (8)	0.25	0.6735 (11)	0.0220 (12)*
O2	0.3287 (4)	0.4855 (4)	0.1743 (8)	0.0078 (6)*

Geometric parameters (Å, °)

Sr1—O1 ⁱ	2.631 (6)	Sr1—O2 ^v	2.694 (5)
Sr1—O1 ⁱⁱ	3.022 (3)	Sr1—O2 ^{vi}	2.633 (4)
Sr1-O1 ⁱⁱⁱ	3.022 (3)	Sr1—O2 ^{vii}	2.670 (4)
Sr1—02	2.670 (4)	Se1—O1 ^{viii}	1.672 (6)
Sr1—O2 ^{iv}	2.694 (5)	Se1—O2	1.688 (3)
Sr1—O2 ⁱⁱ	2.633 (4)	Se1—O2 ^{vii}	1.688 (3)
O1 ⁱⁱ —Sr1—O1 ⁱⁱⁱ	129.8 (2)	O2 ⁱⁱ —Sr1—O2 ^{vi}	66.72 (16)
O1 ⁱⁱ —Sr1—O2	141.34 (14)	$O2^{ii}$ —Sr1— $O2^{ix}$	71.51 (13)
O1 ⁱⁱ —Sr1—O2 ^{iv}	53.94 (11)	$O2^{v}$ —Sr1— $O2^{vi}$	113.49 (8)
O1 ⁱⁱ —Sr1—O2 ⁱⁱ	70.05 (11)	$O2^{v}$ —Sr1— $O2^{ix}$	100.73 (13)
$O1^{ii}$ —Sr1— $O2^{v}$	112.64 (14)	O2 ^{vi} —Sr1—O2 ^{ix}	102.35 (12)
O1 ⁱⁱ —Sr1—O2 ^{vi}	130.92 (16)	Sr1—Se1—O1 ^{viii}	103.7 (2)
$O1^{ii}$ —Sr1— $O2^{ix}$	84.61 (11)	Sr1—Se1—O2	49.98 (13)
O1 ⁱⁱⁱ —Sr1—O2	84.61 (11)	Sr1—Se1—O2 ^{ix}	49.98 (13)
O1 ⁱⁱⁱ —Sr1—O2 ^{iv}	112.64 (14)	O1 ^{viii} —Se1—O2	101.88 (19)
O1 ⁱⁱⁱ —Sr1—O2 ⁱⁱ	130.92 (16)	O1 ^{viii} —Se1—O2 ^{ix}	101.88 (19)
$O1^{iii}$ —Sr1— $O2^{v}$	53.94 (11)	O2—Se1—O2 ^{ix}	99.61 (26)
O1 ⁱⁱⁱ —Sr1—O2 ^{vi}	70.05 (11)	Sr1 ^x —O1—Sr1 ⁱⁱ	110.12 (11)
$O1^{iii}$ —Sr1— $O2^{ix}$	141.34 (14)	Sr1 ^x —O1—Sr1 ⁱⁱⁱ	110.12 (11)
O2—Sr1—O2 ^{iv}	100.73 (13)	Sr1 ^x —O1—Se1 ^{xi}	114.9 (3)
O2—Sr1—O2 ⁱⁱ	102.35 (12)	Sr1 ⁱⁱ —O1—Sr1 ⁱⁱⁱ	129.8 (2)
$O2$ —Sr1— $O2^{v}$	70.55 (11)	Sr1 ⁱⁱ —O1—Se1 ^{xi}	94.58 (14)
O2—Sr1—O2 ^{vi}	71.51 (13)	Sr1 ⁱⁱⁱ —O1—Se1 ^{xi}	94.58 (14)

supplementary materials

O2—Sr1—O2 ^{ix}	57.75 (12)	Sr1—O2—Sr1 ^{xii}	109.45 (11)
O2 ^{iv} —Sr1—O2 ⁱⁱ	113.49 (8)	Sr1—O2—Sr1 ⁱⁱⁱ	108.49 (13)
$O2^{iv}$ —Sr1— $O2^{v}$	65.02 (13)	Sr1—O2—Se1	101.06 (15)
O2 ^{iv} —Sr1—O2 ^{vi}	171.8 (2)	Sr1 ^{xii} —O2—Sr1 ⁱⁱⁱ	113.49 (8)
$O2^{iv}$ —Sr1— $O2^{ix}$	70.55 (11)	Sr1 ^{xii} —O2—Se1	106.80 (19)
$O2^{ii}$ —Sr1— $O2^{v}$	171.8 (2)	Sr1 ⁱⁱⁱ —O2—Se1	116.72 (17)

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+1, *y*-1/2, -*z*+1; (iii) -*x*+1, *y*+1/2, -*z*+1; (iv) -*x*+1, *y*-1/2, -*z*; (v) -*x*+1, -*y*+1, -*z*; (vi) -*x*+1, -*y*+1, -*z*; (vi) -*x*+1, -*y*+1, -*z*; (vii) *x*, *y*, *z*-1; (ix) *x*, -*y*+3/2, *z*; (x) *x*-1, *y*, *z*; (xi) *x*, *y*, *z*+1; (xii) -*x*+1, *y*+1/2, -*z*.

The unit-cell parameters for isotypic MXO₃ compounds (M = Ba or Pb; X = S or Se) and the lengths of the Se(S)—O bonds (\mathring{A} , °)

Compound	a	b	с	β	Se(S)—O
BaSeO ₃ ^a	4.677	5.645	6.851	107.16	1.690, 1.693 (× 2)
β -PbSeO ₃ ^b	4.5737	5.5137	6.634	106.547	1.674, 1.729 (× 2)
Scotlandite ^c	4.505	5.333	6.405	106.24	1.507, 1.529 (× 2)

Notes: (a) Giester & Lengauer (1998); (b) Koskenlinna & Valkonen (1977); (c) Pertlik & Zemann (1985).

